毕达哥拉斯及其学派的故事

毕达哥拉斯(Pythagoras,约公元前580~前500)生于萨摩斯(今希腊东部小岛),他是希腊著名哲学家、数学家,天文学家,也是从事政治、宗教活动与科学研究的毕达哥拉斯教派的首领。

在古希腊早期的数学家中,毕达哥拉斯的影响是最大的。他在数学上有许多重要的贡献,例如:在几何学方面,毕达哥拉斯学派证明了““三角形内角之和等于两个直角”的论断,研究了黄金分割;发现了正五角形和相似多边形的作法;还证明了正多面体只有五种——正四面体、正六面体、正八面体、正十二面体和正二十面体。 

  

年轻时毕达哥拉斯像其他富家子弟的那样曾到巴比伦和埃及去游学,因而受到了东方文明的影响与熏陶。回国之后毕达哥拉斯创建了政治、宗教、数学合一的秘密学术团体,就是毕达哥拉斯学派。这个学派有一些看起来与众不同的很奇怪的教规,他们的活动都是秘密的,并且在教派中笼罩着一种不可思议的神秘气氛。

据说该学派还有这样一些规定,每个新入学的学生都得宣誓严守秘密,并终身只加入这一学派。还有要将一切发明都归之于学派的领袖,并且要严格保密,不能告诉别人,以致后人在研究这个学派的成就的时候,弄不清楚一些知识究竟是谁在何时发明的。由于该教派教规是把政治、宗教和数学研究活动交织在一起的,后人很难理解为什么数学研究的活动和成果变成了秘密的工作。

毕达哥拉斯学派认为数最崇高,最神秘,他们所讲的数是指整数。“万物皆数”,就是说宇宙间各种关系都可以用整数或整数之比来表达。

毕达哥拉斯哲学是以这样一个假定为基础的,即整数是人和物质的各种各样的性质之起因。这就导致对于数的性质的阐述与研究,并且同算术(作为数的理论)、几何学、音乐、球面学(天文学)一起,构成毕达哥拉斯研究计划的基本课程,称为四艺;再加上文法、逻辑和修辞学三科,是中世纪受教育的人必修的七门课。

毕达哥拉斯的另一贡献是发现了毕达哥拉斯定理(即勾股定理)。而他的一个名叫希帕索斯的学生在学习研究勾股定理的时候发现了,边长为1的正方形,它的对角线却不能用整数之比来表达。

 

这一发现实际上是推翻了教派原来的论断,触犯了这个学派的信条。他们不许希帕索斯泄露存在根2(即无理数)的秘密, 但是天真的希帕索斯在无意中向别人谈到了他的发现的事实。后来毕达哥拉斯教派为了维护教派的信条, 以破坏教规为理由将希帕索斯装进大口袋扔进了大海。希帕索斯因为发现了根号2“无理数”的存在, 揭示了一个科学的真理付出了生命的代价。

     

同时该教派犯下了将发现无理数存在的教派成员、毕达哥拉斯的学生希帕索斯迫害致死的罪行。这是数学史上一个最著名的悲剧。他那传奇般的一生给后代留下了许多的故事与传说。

然而像根号2这样的“无理数”存在的事实,却不可能一扔了之,由此引发了数学史上第一次危机,也带来了数学思想一次大的飞跃。认识无理数的存在告诉我们,矛盾的存在说明人的认识还具有某种局限性,需要有新的思想和理论来解释。我们只有突破固有思维模式的束缚,才能开辟新的领域和方向,科学才能够继续发展。

科学无止境,认识无禁区,那些事先为科学设定条条框框的,最后将变成阻碍科学进步的阻力,必然被时代的所抛弃。

毕达哥拉斯定理对数学的发展起到了巨大的推进作用,他的数的认识在音乐、天文、哲学方面都有应用,也做出了一定贡献,首创地圆说,认为日、月、五星都是球体,浮悬在太空之中。

毕达哥拉斯学派明显地倾向于贵族政治,并且在社会上的影响越来越大,以致南意大利的民主力量推毁了该学校的建筑并迫使该团体解散。据说,毕达哥拉斯逃到了梅塔庞通(Metapontum)并死在那里,也许是在75岁到80岁的高龄时被杀的。该团体虽然形式上解散了,但实际上还继续存在至少二百年之久。

 

小故事之一:

传说他是一个非常优秀的教师,他认为每一个都该懂些几何。有一次他看到一个勤勉的穷人,他想教他学习几何,因此对此人建议:如果这人能学懂一个定理,那么他就给他一块钱币。这个人看在钱份上就和他学几何了,可是过了一个时期,这学生对几何却产生了非常大的兴趣,反而要求毕达哥拉斯教快一些,并且建议:如果老师多教一个定理,他就给一个钱币。不需要多少时间,毕达哥拉斯把他以前给那学生的钱全部收回了。

小故事之二:

毕氏建立毕达歌拉斯兄弟会,崇拜整数、分数为偶像,他们认为透过对数的了解,可以揭示宇宙神秘,使他们更接近神,事实是一个宗教性社团组织。入会时需宣誓不得将数学发现公诸于世,甚至在毕氏死后,有成员因公开正12面体可由12个正五边形构成的发现而被迫浸水致死。他们集中注意于研究自然数和有理数,特别是完美数,它是本身正因子(除了本身之外)之和,例如:6=1+2+3、28=1+2+4+7+14。他们认为上帝因为6是完美的,因此选择以6天创造万物,且月亮绕行地球一周约28天。

小故事之三:

毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;但这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形磁砖,其实毕达哥拉斯不光是在欣赏磁砖的美丽,而是他在想这些边长之间的数学关系,他拿画笔在地板上画着比着,选了一块磁砖以它的对角线 AB为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。他觉得很有趣,继续研究着他的发现。于是又用两块磁砖拼成的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块磁砖的面积,也就是以两股为边作正方形面积之和。至此毕达哥拉斯作了大胆的假设: 任何直角三角形,其斜边的平方恰好等于另两边平方之和。那一顿饭,这位古希腊数学大师,视线都一直没有离开地面。

小故事之四:

毕达哥拉斯很少公开露面,他虽然向学生教授数学和哲学,但绝不允许学生将之是外传,也因为兄弟会隐瞒数学发现,渐渐引起居民的畏惧、妄想和猜忌。后来因学派介入了政治事件,与当地行政当局发生冲突,终于诱使居民毁了这学派,80岁时毕氏在一次夜间骚乱中被杀,而避居国外的信徒,继续传播他们的数学真理。

版权所有: 中国数字科技馆 京ICP备06067556号
资源建设维护单位: 中国科学院数学与系统科学研究院
地址:北京市中关村东路55号 邮编:100190 电话:010-62553304